PP电子(中国)有限公司官网

大数据和智能电网的关系

发布时间:2016/12/16

智能电网和大数据的关系

智能电网是大数据的重要技术应用领域之一。中投顾问发布的《“十三五”数据中国建设下智能电网产业投资分析及前景预测报告》分析认为智能电网大数据结构复杂、种类繁多,具有分散性、多样性和复杂性等特征,这些特征给大数据处理带来极大的挑战。智能电网大数据平台是大数据挖掘的基础,通过智能电网大数据平台可实现智能电网全数据共享,为业务应用开发和运行提供支撑。

智能电网是以物理电网为基础,将现代先进的传感测量技术、通信技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。它涵盖发电、输电、变电、配电、用电和调度等各个环节,对电力市场中各利益方的需求和功能进行协调,在保证系统各部分高效运行、降低运营成本和环境影响的同时,尽可能提高系统的可靠性、自愈性和稳定性。随着智能电网的发展,电网在电力系统运行、设备状态监测、用电信息采集、营销业务系统等各个方面产生和沉淀了大量数据,充分挖掘这些数据的价值具有重要的意义。

大数据是近年来受到广泛关注的新概念,一般是指无法在可容忍的时间内用传统的IT技术、软硬件工具和数学分析方法,对其进行感知、获取、管理、处理和分析的数据集合。智能电网被看作是大数据应用的重要技术领域之一。目前许多学者正在进行智能电网大数据研究,包括发展战略研究、大数据技术研究、应用研究等。

智能电网大数据应用众多,涉及电网安全稳定运行、节能经济调度、供电可靠性、经济社会发展分析等诸多方面,进行智能电网大数据分析需要统一智能电网大数据,并且由于应用众多,对计算、存储、网络等性能提出了较高要求,因此需要构建面向智能电网应用的统一大数据处理平台。

智能电网大数据应用领域

大数据技术在智能电网中具有广阔的应用前景,报告从负荷预测、源网荷协同、网架规划三个方面进行论述。

1、负荷波动及新能源出力预测

负荷预测作为电网电量管理系统的重要组成部分,其预测误差的大小直接影响电网运行的安全性及可靠性,较大的预测误差会给电网运行带来较高的风险。现阶段负荷预测主要是通过负荷历史数据,利用相似日或者其他算法预测负荷的大小,短期预测精度较高,中长期精度较差。随着电网采集数据范围增加,利用大数据技术可以将气象信息、用户作息规律、宏观经济指标等不同种类的数据,通过抽象的量化指标表征与负荷之间的关系,实现对负荷变化趋势更为精确的感知,提高预测精度。

分布式发电的不断接入,特别是新能源渗透率的不断增加,打破了原来电网运行管理的模式,不但需要考虑负荷侧的波动,还要计及新能源出力的间歇性。在我国,新能源接入主要受制于两个因素:(1)新能源大多分布在电网末端远离负荷中心,网架结构较为脆弱,从而造成电网接纳能力较弱;(2)新能源预测误差较大,目前风电出力预测日前和实时的误差分别为20%、5%左右,这样就会给电网调度带来较大的挑战。由于新能源较大的预测误差,往往需要在大型新能源基地周边建立配套的大型常规能源作为旋转备用,以弥补新能源预测精度方面的不足。作为备用的常规电源,由于担负着较重的旋转备用,长期不能工作在最佳运行点,将造成其发电效率低以及能源的浪费。利用大数据技术,可以有效提高新能源出力的预测精度,如丹麦的维斯塔斯风力技术集团,在风电出力预测时采用了IBM的大数据解决方案,在风电出力预测时加入了地理位置、气象报告、潮汐相位、卫星图像等结构化及非结构化的海量数据,从而优化了风力涡轮机布局,提高风电发电及预测效率,获得了较为可观的经济效益。

2、源网荷协同调度

利用大数据技术可以有效降低新能源预测误差,但这对于新能源出力固有的波动性,传统的调度方法通过增加系统的旋转备用来解决。在电力市场不断完善的背景下,可以不通过调节常规电源的出力,而是利用市场手段,使得一部分用户主动削减或者增加一部分负荷去平衡发电侧出力的变化,即通过需求侧管理实现系统电量平衡。若要达到网源荷协调优化调度需要大量的辅助信息,如新能源出力波动大小、电网线路输送能力、负荷削减电量的范围、实时电价等,其中每个因素又受很多条件的影响,因此是一个非常复杂的电力交易过程,此时必须利用大数据技术发掘数据内部之间的联系,从而制定出最佳调度方案。智能电网和传统电网最大的区别在于源网荷三者之间信息流动的双向性,三者之间信息在一个框架内可以顺畅的进行交互,极大地提升电网运行的经济性、可靠性。

3、网架发展规划

中投顾问发布的《“十三五”数据中国建设下智能电网产业投资分析及前景预测报告》指出,电网已经从传统电网发展到智能电网,随之将会成为能源互联网的一部分,从而使得电网与整个能源网联系的更为紧密。电转气技术的提出,为新能源接入提供了新的思路,试图将不宜存储的电能转化为便于存储的天然气,但由于转化效率较低,尚属于技术论证阶段。冷热气三联技术实现了能源的阶梯利用,能源利用效率高、环境污染小、经济效益好。电动汽车的兴起将会显著提高能源末端电力消费的占比,充换电站将会像加油站一样分布在城市的每个角落。传统的电网规划数据来源渠道不足,数据分析挖掘能力欠缺,因此造成规划过程中面临着众多不确定性因素的现象,特别是现在新技术不断涌现,能源结构不断发生变革,使得传统的电网规划方法往往与实际需求差别较大。电网规划的过程中,需要利用大数据技术综合考虑多种因素如分布式能源的接入、电动汽车的增长趋势、电力市场环境下为用户提供个性化用电服务等,多类型、海量数据的引入,可以有效减少电网规划过程中的不确定性,使得整个规划的过程更加合理、有序。 来源:中国投资咨询网

上一篇 : 张家口集中供热项目PPP模式实现三方共...

下一篇 : “沈阳制造”无人机助力智慧农业

返回列表
友情链接: